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EXECUTIVE OVERVIEW

This document is the final report for research conducted for Cooperative

Agreement NCCI-120 which ended July 31, 1991. In this report, the design and

preliminary evaluation of a passive acoustic fetal heart rate monitor is described.

The detailed description of this research effort follows this section and is taken from

the masters' thesis titled "Signal Processing Methodologies for an Acoustic Fetal

Heart Rate Monitor" by Robert A. Pretlow, III, M.D.. Dr. Pretlow's research was

directly supported by this cooperative agreement.

The system development was an effort to incorporate NASA technology into

a fetal heart rate monitor as first conceptualized by Dr. Donald Baker. Of interest

is the use of polyvinyl fluoride (PDVF) piezoelectric film which is used to monitor

vibrations in wind tunnel models, as sensitive microphone for the pick up of fetal

heart tones. The cooperative agreement between ODU and NASA was to develop a

signal processing strategy as part of a passive acoustic fetal heart rate monitor. The

purpose of the system is provide noninvasive fetal monitoring for high risk

pregnancies with out the need for costly and perhaps unobtainable clinical

evaluation. At present, the accepted approach to fetal monitoring is with ultrasound-

based monitoring which may be administered only by specialists within a clinical

setting. The form of monitoring being considered is the fetal nonstress test which

determines the fetal well being by monitoring heart rate acceleration and deceleration

after perceived fetal movement, such as when the fetus turns or kicks.

The prototype fetal heart rate system is characterized by a sensor belt

consisting of an array of PDVF sensors which provide the acoustic pickup of the fetal

heart tones. The acoustic signals are then transformed by the PVF2 material to

electrical signals which then are then digitally sampled and operated upon by the

digital signal processing unit. The digital signal processing unit is composed of a

personal computer with an imbedded digital signal processing unit. In the signal

processing unit, the fetal heart tone is detected using a linear prediction paradigm.

The product of the signal processing is an estimate of the instantaneous heart rate

which is then fed as an input to a strip chart recorder.

Preliminary clinical evaluation of the prototype system was performed with the

cooperation of the Department of Fetal Maternal Medicine at Eastern Virginia

Medical School (EVMS). Volunteers were solicited and gave prior consent under the



auspices of human subject regulations of both Old Dominion University and MCHR.
The selected volunteers were in their thirty fifth to thirty ninth week of pregnancy.
Each volunteer was given a normal ultrasound stress test followed by the recording
of data with the prototype acoustic monitor system. Initial results showed that the

prototype system fetal heart rate compared favorably to that recorded by the
ultrasound system. The prototype acoustic monitor system has subsequently been
turned over to NASA for evaluation by Dr. Donald Baker.



ABSTRACT

SIGNAL PROCESSING METHODOLOGIES FOR AN ACOUSTIC

FETAL HEART RATE MONITOR

Robert A. Pretlow, III

Old Dominion University, 1991

Director: Dr. John Stoughton

Research and development is presented of real time signal processing

methodologies for the detection of fetal heart tones within a noise-contaminated signal

from a passive acoustic sensor. A linear predictor algorithm is utilized for detection of

the heart tone event and additional processing derives heart rate. The linear predictor is

adaptively "trained" in a least mean square error sense on generic fetal heart tones

recorded from patients. A real time monitor system is described which outputs to a strip

chart recorder for plotting the time history of the fetal heart rate. The system is validated

in the context of the fetal nonstress test. Comparisons are made with ultrasonic nonstress

tests on a series of patients. Comparative data provides favorable indications of the

feasibility of the acoustic monitor for clinical use.
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CHAPTER ONE

INTRODUCTION

1.1 FETAL HEART RATE MONITORING

Thefetal heartbeatwasfirst detectedin 1818by aphysicianlisteningto a

mother'sabdomenwith a crudefunnel-shapedtube [1]. In 1833atextbookon

"Obstectric Ascultation" noted the possible relationship between certain fetal heart rate

(FHR) patterns and fetal well-being [2]. Since that time the clinical utility of FHR

monitoring has become well established as a means of assessing the health of the fetus

[3]. FHR monitoring is performed during pregnancy in the form of the so-called

nonstress test (NST). In the NST, if a 15-second long fetal heart rate acceleration of 15

beats per minute over its average baseline value follows a fetal movement three times

during a 20 minute period, then the fetus is judged to be healthy [4]. Figure 1.1

illustrates the NST.

The NST is conventionally performed in a clinic or physician's office because of

the size and complexity of the equipment. Monitoring of the fetus during pregnancy is

thus possible for only brief, intermittent periods. Three methods have been used to

monitor fetal heart rate and perform the NST. They are fetal electrocardiogram (FECG)

techniques, continuous wave ultrasonic Doppler-shift techniques, and fetal

phonocardiogram (FPCG) techniques.

1.1.1 FECG

FECG techniques detect the changing electrical field of the beating fetal heart and

involve the attachment of electrodes either to the mother's abdomen or directly to the
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fetusif ruptureof thefetalmembraneshasoccurredduringlabor. Thematernal

abdominalsignalis of very low amplitudeandhighly contaminatedwith largeamplitude

maternalECGandbackgroundnoiseandhasnotbeenfoundto bepracticalfor FHR

monitoring [40]. Themethodof attachingelectrodesdirectly to thefetusis available

only whenthefetalmembranesarerupturedandthemotheriscommitedto delivery.

1.1.2 Doppler Ultrasonography

Dopplerultrasonographyinvolvestheplacementof acontinuous-waveultrasound

transduceron thematernalabdomenanddetectionof theDopplerfrequencyshift in the

reflectedsignalproducedby themovingstructuresof thefetalheart. It is aquite

sensitivetechniqueandallowsdetectionof thefetalheartbeatwhenmembranesare

intact. It is, however,theoreticallyan "invasive"techniquein thatthefetusis continually

exposedto theenergyof theultrasonicbeam,althoughnoevidenceof fetalharmhas

beendemonstratedto date.Also, disruptionof detectionwill occurif thefetal heart

moves(with fetal movement)out of thepathof therelativelynarrowbeam.

1.1.3 FPCG

FPCG techniques detect the fetal heartbeat sounds or fetal heart "tones" (FLIT) by

means of a passive microphone applied to the maternal abdomen. The FPCG technique

was used in early fetal monitors but eventually was abandoned in favor of

ultrasonography because of the greater sensitivity of the latter [5]. The main advantages

of the acoustic technique are its passivity (non-invasiveness) and its simplicity.

1.2 Background of the NASA/ODU/EVMS Project

In 1986 Dr. Donald Baker of Spokane, Washington suggested that long term fetal

monitoring of the mother at home might prevent a significant number of fetal problems

such as hypoxic brain damage. He further suggested that a passive acoustic device
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utilizing theFPCGsignalwouldobviatethe invasiverisks inherentwith longterm

ultrasonicmonitoring. Moreover,theimaginedsimplicity of anacousticfetal monitor

wouldhopefully allowhomeuse.

After attemptingsomedevelopmentof this concepton hisown Dr. Baker

eventuallymade contact with the Technology Utilization Division of NASA whose

charter is to make NASA's technology available to the private sector. NASA agreed to

fund a three year project to develop Dr. Bakers's idea into a working monitor. NASA

would fabricate the sensors for the monitor utilizating a polyvinyl fluoride acoustic film

used to detect vibrations on windtunnel models. The Department of Electrical and

Computer Engineering at Old Dominion University was enlisted to develop the signal

processing hardware and software. The Department of Fetal Maternal Medicine at

Eastern Virginia Medical School (EVMS) agreed to facilitate the clinical data collection

and testing of the acoustic monitor.

1.3 Thesis Research Objective

The objective of this thesis research was to develop the real time signal

processing methodologies which would 1) detect the FHT within the noise contaminated

acoustic signal and 2) derive FHR. The system hardware and software subsequently

would be tested with the sensor belt in the clinical context of the NST. The acoustic

monitor FHR output would be compared with that of a conventional ultrasonic monitor

on a series of patients.

1.4 Thesis Organization

The background and theory used to develop the heart tone detection algorithm is

presented in Chapter Two. Chapter Two also includes the results of an initial data

collection pilot study. The methodologies required to implement the detection algorithm

in real time will be presented in Chapter Three along with the heart rate derivation
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techniques.Also includedin ChapterThreeis adescriptionof thesystemhardware.In

ChapterFour theexperimentalNST studyto validatethesystemhardwareandsoftware

is presented.TheFHR recordsof aseriesof patientsundergoingsimultaneousacoustic

andultrasonicNS'Fsarecompared.ChapterFive containstheexperimentalconclusions

andadiscussionof thedevelopmentalpotentialof thealgorithmandtheacoustic

monitor.



CHAPTER TWO

BACKGROUNDANDTHEORY

2.1 Introduction

The background and theory for the design of the signal processing algorithm for

the detection of fetal heart tones is presented in this chapter. In section 2.2 the

characteristics of the FPCG signal are described, first as reported in the available

literature and second as observed in the data collection pilot study of this research.

Section 2.3 contains a review of previous heart beat event detection methodologies from

the available literature. The suitability of these metodologies for the current research is

discussed. Lastly, in section 2.4 the adaptively "trained" least mean square error linear

predictor is described. The rationale for its use in the current application is discussed.

2.2 FPCG Signal Characteristics

The FPCG signal is a relatively low energy signal. Ascultation of the fetal heart

tones by a physician generally requires a special type of stethescope, such as the deLee

Hillis model which includes a metal bracket worn over the physician's head to increase

sensitivity. Generally, the fetal heartbeat can be heard in only a small area of the

mother's abdomen of usually no more than three centimeters (cm) radius, although the

range of this local area can encompass up to a 12 cm radius as illustrated in figure 2.1.

The heart tone signal is thought to result from vibrations produced by the opening

and closing of the four valves controlling blood flow through the fetal heart and from

vibrations of the heart muscle. The heart tones are classified into two components, the

6
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frequencies, stating, "the frequency spectrum ... has not been exactly measured because

of dependence on the coupling condition between the transducer and abdominal wall."

They observed the first heart sound at a frequency of 50 Hz and the second sound at 100

Hz. They claim to have determined the "true frequency spectrum of the fetal heart

sounds" since their results include compensation for the response of their transducer on

the abdominal wall. But their findings are suspect in that they passed the transducer

signal through a 68 - 72 Hz bandpass filter prior to spectral analysis and their transducer

was also tuned to resonate at 70 Hz. Additionally, they note that the frequency spectrum

varies from one patient to another and also varies in the same fetus according to

gestational age.

Nagel [11] used a transducer consisting of piezoelectric material bonded to a

circular metal disk to determine the spectrum of the fetal heart tones. His results are

shown in figure 2.4a, which depicts the power spectral density of the acoustic maternal

abdominal signal. On a large series of patients he found the first fetal heart sound to be

in the range of 20 Hz and the second sound about 45 Hz. Nagel also reports that the

spectrum of the fetal heart sounds varies considerably with fetal gestational age as shown

in figure 2.4b. He suggests the possibility of using the heart tone spectrum as a means of

estimating fetal maturity.

The above literature findings are summarized in table 2.1.

2.2.2 FECG Signal

The fetal electrocardiogram (FECG) signal is produced by the electrical

depolarization of the fetal heart corresponding to heart muscle contraction. The FECG

signal is important because the FECG waveforms have many similarities to the FPCG

waveforms. Also, considerable signal processing effort has been applied to processing

the FECG, whereas there has been little effort applied to processing the FPCG.
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Table 2.1. Fetal Heart Frequencies per Available Literature

Source

Hewlett-Packard [9]

Jenssen [11]

Talbert et al. [12]

Talbert et al. [9]
I I

Kobayshi et al. [13]
I

Nagel [52]

First sound

80-110 Hz -"""

40 Hz

30 Hz

60-80 Hz(40 Hz)

50 Hz

20 Hz(45 Hz)

Second sound

I

40-50 Hz

75-100 Hz

60 Hz

100 Hz

40-50 Hz
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The FECG waveform consists of a small amplitude one half cycle "P" wave, from

depolarization of the upper chambers (atria), followed by a large one and one half cycle

"QRS" wave, from depolarization of the lower chambers (ventricles), followed by a

small half cycle ventricular repolarization "T" wave. A typical FECG waveform and its

time relationship to the FPCG waveform can be seen in figure 2.5.

2.2.3 Modeling of the FPCG Signal

The FPCG can be modeled as a sum of "almost" periodically recurring

deterministic transients or "wavelets" [12],[13]. The interval between the wavelets is a

random process, although its statistics have a certain degree of stationarity in healthy

patients. The shape of the wavelet is fairly deterministic for a particular patient, although

the wavelet shape and amplitude can vary slightly from one cycle to the next due to

changes in heart blood flow dynamics.

The FPCG signal can be summarized by the following expression:

x(t) -- s(t) + n(t)

where x(t) is the composite signal consisting of the heart signal superimposed on

background noise, n(t) [13]. Background noise for the FPCG consists of maternal

respiration, gastrointestinal, and muscle movement sounds; maternal heartbeat,

aortic/placental pulse waves, and placental blood turbulence sounds; and environmental

ambient noise and 60 Hz electromagnetic interference(EMI). The noise function is

shown above as additive, but noise also can be multiplicative [14] as from variation of

sensor coupling to the abdomen because of maternal movement and/or respiration, so that

x(t) = m(t)[s(t) + n(t)]
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FECG

FPCG

•:i

Figure 2.5. Time Relationship of FPCG Signal to FECG Signal

(from Jenssen [8]).
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where re(t) is the multiplicative noise function.

The maternal heart tones are of quite large amplitude as compared to the fetal

acoustic signal but fortunately are of lower frequency range. There is some overlap of

the spectrums, however. Nagel [11] found the maternal tones to be in the 8 - 15 Hz

range as shown in figure 2-3a. The maternal aortic pulse wave is also a large amplitude

signal to which the PDVF sensors of this research would be sensitive since their response

is essentially down to DC. The spectral energy of this wave has not been reported in the

literature, however, that of the general human pulse has been reported to have 99% of its

spectral energy below 10Hz [15].

2.2.4 Data Collection Pilot Study

In order to formulate a heart tone detection strategy, a definitive knowledge of the

fetal heart tone signature is essential as well as of the noise components of the raw sensor

signal. Since the available literature is contradictory in this area, an initial data collection

pilot study was conducted with the purpose of specifically identifying the fetal heart tone

signature characteristics and the sources of noise contamination in the sensor signal.

Additionally, the recorded data would be available for subsequent development and

testing of the detection algorithm.

Fetal heart tone recordings were conducted on ten patients coming to the

Department of Fetal-Maternal Medicine at EVMS for high risk obstectrical care but with

no known fetal heart abnormalities. Approval for the human subjects study was obtained

from the Institutional Review Boards of both ODU and EVMS. The recording system

consisted of a triple sensor ("second generation") sensor belt (figure 4.2), a four channel

medical isolation amplifier with a fixed gain of 100, two adjustable 4th order

Butterworth high pass filters in series, a 6th order Bessel 167Hz anti-aliasing low pass

filter, a second amplifier with a gain of 10 - 100 - 1000, a data aquisition board equipped

with a sample/hold module, and a PC. The PC allowed wide-bandwidth recording of the
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data on hard disk as well as display of the incoming signal waveforms on the monitor

screen in real time. Additionally an audio amplifier with a set of headphones was used to

optimally position the sensor belt.

2.2.5 Results of the Data Collection Pilot Study

It was immediately apparent in the pilot study that the maternal heart tone signal

and maternal aortic pulse wave were saturating the front end amplifier at the gain levels

required to detect the fetal tones (gain of 1000 to 10,000). Digital filtering was not

feasible because the fetal signal that would be left would be so small that it would

disappear in the quantization noise. Two four pole analog high pass filters in series were

required in order to eliminate the maternal signals and thereby prevent amplifier

saturation. After analyzing spectral data on the fetal and the maternal signal the high

pass cut off frequency required was determined to be 20Hz.

The morphology of the recorded fetal heart tone signatures was quite distinct.

Figure 2.6 shows a typical recorded fetal heart tone from a patient in the pilot study and

clearly depicts the components described in the literature. The mitral, tricuspid, aortic,

and pulmonary sub-components are separately apparent, more so than in the examples

from the literature. The pilot study revealed that fairly constant heart tone morphology

exists across an individual patient's recording, but there is large variability among

different patients. This variability is primarily in terms of the relative amplitudes of the

four sub-components. There was variation in the number of cycles of a specific

component among different patients, but the gross periods of the components were

similar. Figure 2.7 compares FPCG recordings from three patients.

The amplitude spectrum of a composite of 20 averaged heart tones from a

representative patient is shown in figure 2.8. Note that essentially all of the energy is in

the frequency range 5 - 80 Hz with most 15-30 Hz. Composites from other patients in

the data collection series show similar spectral plots. These findings are in disagreement
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with all of the previous literature findings noted above with the exception of Nagel [11].

The data collection pilot study findings show a much lower spectral range for the fetal

heart tones than that reported by the investigators other than Nagel, and almost a factor

of two lower spectral range than he reported. The marked discrepancies among

investigator findings may result from differing responses of the transducer system as well

as that of the recording system. The frequency response of the PDVF transducer of this

research is essentially fiat from 0 - 150Hz (NASA data). The PC data acquisition system

also has a fiat response in that range. The findings of the data collection pilot study of

this research, therefore, would seem to represent the true signature of the fetal heart tone.

The contaminating noise in the raw sensor signal output was found to consist

mainly of a large amplitude maternal heart tones and aortic pulse waves (as predicted

from the literature), marked maternal body motion artifact, and lesser amplitude

environmental sounds. Sixty Hz EMI was also a problem initially due to the high

impedance of the sensors. Shielding of the sensors with a grounded copper sheathing

(externally insulated to maintain patient electrical isolation) elimnated most of the 60 Hz.

To partially solve the anticipated motion artifact problem, the sensors were configured in

back-to-back pairs as shown in figure 2.9, which illustrates the seven sensor array front-

end electronics. The acoustic wave propagates through the active sensor pair producing

signal outputs from each sensor that are 180 degrees out of phase, whereas the motion

noise and 60 Hz are in phase. Differentially adding the two outputs cancels a significant

portion of the motion artifact and 60 Hz interference while approximately doubling the

desired signal output. Unfortunately, the amounts of motion artifact signal on the back-

to-back differentially added sensors is not equal because one is in contact with a surface

whereas the other is "free." It is unknown whether the relative proportions of motion

artifact on the members of a sensor pair is a constant or a function of such factors as belt

tightness. Because scaled differential addition is therefore not possible, considerable

motion artifact remains to be dealt with by other signal processing methods.
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In several patients maternal heart tones were also a significant problem in spite of

the front-end high pass analog filters. In those patients the maternal and fetal spectrums

had large overlap.

2.3 Previous Heart Beat Event Detection Methodologies

Heart beat event (wavelet) detection is necessary in order to determine heart rate.

Heart rate is the reciprocal of the time interval between wavelets of the same type (ex.

first heart sound of two sequential heart tones). Heart beat wavelet detection

methodologies reported in the available literature consist of three approaches: threshold

detection, autocorrelation techniques, and signature matching.

2.3.1 Threshold Detection

Threshold detection is the simplest method for wavelet detection and heart rate

determination [16]. The point where the wavelet first exceeds a threshold value

constitutes the fiducial point for timing. The threshold point is chosen by taking a value

for which the probability of exceeding is high for the desired wavelet but which is low

for the interwavelet waveforms and/or noise. A minimum signal to noise ratio (SNR) is

therefore required for threshold detection, and is

SNR > 1.

Threshold point values are generally specified relative to the minimum absolute

value of the signal. For example,

THR = IXminl + 0.2lXmax - Xminl.
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Therearethreedisadvantagesof thresholddetection. First, theoverall signalto

noiseratiomustbesignificiantlygreaterthanonefor thedesiredwaveletsto appearas

maximaabovethebaselinenoiselevel minima. Second,transientnoisespikeswill be

detectedasevents.Third, baselinedrift cancausethedetectorto fail.

2.3.2 Autocorrelation

Autocorrelationdetectionis themethodof choicefor Doppler-shiftultrasonic

determinationof fetal heartrate [17]. The fetal heart beat is manifested as reflected tone

burst wavelets analogous to the fetal phonocardiogram. The tone bursts correspond to

Doppler frequency shifts of the reflected continuous outgoing ultrasound signal produced

by the moving heart valves. Autocorrelation processing detects the tone bursts among

the noise:

N-1

Rs(k) = (l/N) X s(n)s(n-k)

n=0

where -N < k < N. The Doppler shift signal vector block is stored and shifted by k points

and the inner product of the stored block with the incoming block produces the

autocorrelation function output. Generally, one to three second blocks are autocorrelated

in real time to reveal the fetal heart period [17].

Autocorrelation emphasizes periodically occurring correlated wavelets by

eliminating non-periodic uncorrelated noise such as movement artifact, baseline drift,

and random environmental noise. Autocorrelation processing requires subsequent

threshold detection for heart beat event identification.

The disadvantages of autocorrelation processing include its requirement for a

periodically recurring wavelet in order for wavelet detection to be accomplished.

Variation of the inter-wavelet interval causes a phenomenon called "jitter" when
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processingwith autocorrelation[13]. Secondly,becausetheautocorrelationfunction will

emphasizeanyperiodicsignal,it will alsodetectperiodicnoise[18]. Thirdly,

autocorrelation has a high processing time requirement because of the number of

multiplications and buffer shifting operations required.

2.3.3 Signature Matching

Detection by signature matching involves comparing the input signal vector to a

known desired template vector point by point. This comparison generally is done by

either cross-correlation, linear prediction, block transforms, or neural networks.

Cross -correlation:

Cross-correlation of the signal vector with a desired template vector is expressed

as follows:

N-1

Rxy(k) = (l/N) E x(n)y(n-k).

n=O

The output of the cross-correlator consists of peaks corresponding to the

occurrence of the heart beat wavelets. When the signal block being processed matches

with the template, the inner product generates a maximum. In the areas where the signal

block does not match with the template, the positive-negative products of the two vectors

will tend to cancel out giving a minimum. A threshold detector is subsequently used to

detect the peaks [14].

Cross-correlation of the signal with a template has the advantage of detection of

frequency sequential relationships, i.e. the heart wavelet signature. Disadvantages are its

sensitivity to phase shifts and the high number of mutiplications and buffer shifts

required.
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Lilaear Prediction:

Linear prediction is mathematically similar to cross-correlation. Linear

prediction theory states that if a signal signature represents the response of a linear

system, then each point in the signal signature vector is a linear combination of all the

preceding points, or:

N
/x

S(n)-- _ S(n-k)P(k)

k--1

where S(n) are the signal vector samples and P(k) are the predictor coefficients.

ECG signals, for example, are considered predictible through second order auto-

regressive modeling [19]. Lin and Chang [20] used a linear predictor, also of order two,

to detect ECG wavelets in adults. The residual prediction error,

A

E(i) -- S(i)- S(i)

reaches local minimums at the points of the occurrence of the ECG wavelets in the raw

signal. A simple error threshold is then used as the basis of a wavelet detector. They

furthermore found that increasing the prediction order above two does not affect the error

between the predicted and actual signal.

Lin and Chang computed the predictor weights by means of a recursive procedure

carried out on a "short-time" autocorrelation coefficient matrix derived from heart signal

templates. A mean square minimization technique was used for optimization of the

weights. The authors also point out that, although in speech analysis the higher the order

the better the predictor performance, such does not appear to be true for ECG wavelet
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detection.Theadvantagesof thelinearpredictiondetectorascomparedto alternative

methodologiesincludemoreaccuratedetectionof signalfeaturesandhigherspeed.

Block Transform Methods

Taking the block transform (ex. FFT) of the incoming signal vector generates its

spectral parameters. Directly comparing these spectral parameters to those of a template

heart tone signature constitutes frequency domain detection. Venkat [21] used a method

for speech processing of taking a second FFT of the initial FFT spectral parameters to

generate a set of four or five identifying "features." These features are then used to map

the block transform result to a feature space. There a probability decision is made by

means of a Euclidean distance measurement versus a distance threshold as to whether a

desired waveform has been detected. Such transform computations require considerable

processing time and may not detect an actual signature but rather simply its frequency

make up.

Neural Nets

Training a neural network with a known heart signal template is a further method

used for heart signal signature detection. Neural net processing, however, tends to work

best in offiine waveforrn processing such as for ECG analysis and has not been found

practical for real time heart beat event detection.

2.4 Detection Methodology for this Research

The detection of the fetal heart tones is not a simple task. The low baseline SNR

due to ambient background noise and the large-amplitude maternal heart tones, aortic

pulse waves, placental flow sounds, and bodily movement artifact require a highly

specific as well as a highly sensitive detection process.
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2.4.1 Summary of Detection Methodologies (Pros and Cons)

The advantages and disadvantages of the above detection methods as applied to

this research are as follows:

Simple threshold detection requires a SNR higher than is expected in the fetal

signal. Furthermore, threshold detection would interpret noise spikes such as maternal

movement and bodily sounds as fetal heart beat events.

Autocorrelation would not be an optimum technique for detection because of its

tendency to lock on other periodic noise such as 60 Hz EMI or maternal heart signals.

Autocorrelation would produce jitter because the fetal heart beat is not exactly periodic.

Block transforms and neural nets suffer from time constraints imposed by real

time applications. Block transform detection may also tend to lock on collections of

frequencies similar to those of the fetal heart tones rather than the actual signature of the

heart tones.

Template cross-correlation matching would theoretically detect the actual heart

tone signature. Although it is mathematically similar to linear prediction, cross-

correlation is less precise than linear prediction because cross-correlation does not detect

actual inter-relationships between signal points.

Linear predictors are computationally efficient, they work in low SNR's, and they

detect an actual signature because they are sensitive to inter-relationships between signal

points. The linear predictor was therefore chosen as the fetal heart tone detector for this

research.

2.4.2 LMS Linear Prediction Algorithm

The expression for the predictor operation again is:

L
P,

X(i)-- _ X(i-k)W(k)

k--1
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A

where X(i) is the actual current sample value and X(i) the value predicted from past

sample values, W(k) is the weight vector, and L is the length of the predictor. The

predictor error is

A

E(i) = X(i)- X(i).

The error value is used in two ways. In the "training" mode the error is used in a

feedback loop to adjust the values of the weights to more accurately predict the desired

signal vector values. The weights are iteratively adjusted until the mean square error is

minimized. At that point the weights optimumly describe the system generating the

signal or have "modeled" the system [14]. In the processing mode the weights are

constants, having been derived in the training mode. When the mean square error in the

processing mode reaches a local minimum, the predictor has "locked onto" the signal

from which it's weights were derived and detection is accomplished.

The number of weights required to accurately model a particular system response

(the "order" of the predictor) is system dependent. For example, between five and 22

weights are required to describe the adult second heart sound system response [22]

whereas only two weights are required to predict ECG [19].

The mean of the squared predictor error (MSE) can be shown to be a quadratic

function of the weights [23]. If this quadratic function is plotted versus MSE with N--2

weights, for example, the plot will form a three dimensional bowl called a "performance

surface." The minimum point on this performance surface is the minimum MSE and is

found by taking the gradient of the equation of the surface. With multiple weights a

multidimensional performance surface is formed, but the minimum MSE is determined

by the same gradient method. This gradient approach produces an expression for

updating the weights in predictor training by minimizing the MSE called the steepest
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descentmethod.The expression is, however, untenable for use on a computer. A

compromise approach to the steepest descent method is called the "noisy" approximation

to gradient estimation. The noisy gradient weight update expression is

W(k+l) = W(k) + 2CE(k)X(k)

where O is a constant regulating the stability and speed of convergence of the adaptation.

When the weights converge at the minimum MSE value, the predictor has modeled the

desired signal.

The above weight adjustment operation constitutes the Widrow-Hopf Least Mean

Square (LMS) algorithm [23][14]. The LMS algorithm is the most commmonly used

algorithm for adaptive filters. A diagram of the LMS algorithm is shown in figure 2.10

which illustrates the predictor training and processing modes.

2.4.3 Training and Generation of Predictor Weights

The predictor weights are generated via the Widrow-Hopf LMS Algorithm by

training on the desired signal signature, i. e. a template. A template is an average or

generic wavelet. The training process involves multiple passes over the template until

convergence of the mean square predictor error occurs.

A template can be artificially synthesized or generated from real data. There are

two methods for real data template generation: time domain wavelet ensemble averaging

and frequency domain spectral averaging with time domain reconstruction.

Time Domain T¢mplat¢ Generation:

This method assumes that the heart tone signal is periodic and ergotic. The noise

is assumed to be ergotic and wide-sense stationary. One can therefore obtain an

ensemble average by averaging sequential time wavelets. If the noise is not periodic and
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Figure 2.10. Linear Predictor Block Diagram:

a) Training mode with LMS Algorithm. b) Processing mode
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has zero mean, then averaging of multiple wavelets in the time domain will tend to

cancel the noise. As the number of wavelets averaged goes to infinity the noise term

tends to go to zero by cancellation of the random positive and negative deflections.

Aligning wavelet blocks for ensemble averaging is a problem. If the wavelet

samples to be averaged are not in the same relative time positions from one wavelet to

the next, then an inaccurate template will result. Defining boundaries by uniform time

blocking starting at some arbitrary fiducial point results in jitter because of the non-exact

periodicity of the heart wavelets [13].

Frequency Domain Template Generation:

Template generation by frequency domain averaging is less complicated than

time domain averaging. Synchronization of wavelet blocks is not necessary. Fast

Fourier Transforms (FFT) are taken of wavelet blocks of uniform length but with the

wavelet having an arbitrary position within the block. The FFT's of multiple wavelet

blocks are then averaged in terms of the individual frequency components. The inverse is

then taken of the average FFT to give the wavelet template.

As with time domain averaging, there are problems with template generation by

frequency domain averaging. Time domain averaging cancels random background noise

and uncorrelated heart sounds, but alignment of the wavelet points is a problem.

Frequency domain averaging involves minimal alignment problems but background

noise is not automatically elimated. Even if background noise is random, if the

frequencies are uniform throughout the signal, the noise will be represented in the

template [13].

Initially in this research the template for predictor training was generated in the

frequency domain by averaging FFFs of multiple representative heart tone blocks

(usually twenty to fifty ) and then taking an inverse FFT of the average. Because of



33

inadequatedetectorperformancewith thefrequencydomainmethod,atime domain

trainingmethodwasimplemented.But unlike theabovedescribedtime domainmethod,

which requiresalignmentandaveragingof timewavelets,themethodusedby this

researchinvolvestrainingonwholepatientfiles. Wholefile training consistsof passing

thetrainingpredictoroverall thehearttonesin apatientfile, consistingof up to 2000

hearttones.As thefile is processedby thetrainingalgorithmtheweightupdateroutine

is turnedononly whenahearttoneis encounteredandturnedoff betweentones.The

turnonpoint,TE, is governedby arisein the localsignalpoweraboveanarbitrary

threshold,heresetto be:

TE = Emin+ O [ Emax- Emin ].

Where Q was empirically set at about 0.2. One problem with this energy threshold

method is that noise spikes can artificially boost Emax. Therefore, Emax was set at the

nominal maximum observed heart tone energy level. Also, the weight updating was

turned off when the local energy level exceeded Emax. These adjustments produced

better training results for the whole file method.

A comparison of frequency domain template versus time domain whole file

training was carried out on several patient files. The whole file training method gives

superior results. Accordingly, the whole file method was used to generate weights for

real time implementation of the LMS linear predictor algorithm.

Weights generated from one patient file were found to be suitable for almost all

other patients, indicating global signature characteristics. An optimum set of weights

derived from a single patient in the data collection phase was used for all patients in the

real time NST comparison trials described in Chapter 4.



2.4.4 Linear Predictor DC Offset Sensitivity Correction

It was observed in the initial real time implementation of the LMS linear

predictor algorithm that small changes in the DC bias of the signal produced

disproportionally large changes in the predictor error. The predictor error shift is

constant if the DC level is constant, which is not significant if the DC level is low

relative to the signal amplitude. But there is also the local DC level generated as a result

of processing finite length signal blocks. The predictor error shift from this local DC is

continually changing and therefore results in a noisy predictor error. The reason for the

DC effect and a way to correct it can be understood from the following analysis. The

predictor equation with the DC term included is

N
A

X(n) = _ W(k)[X(n-k) + C]

k-1

where C is the mean value of the signal block. Expanding this expression:

N N
A

X(n) = _ W(k)X(n-k)+ C _ W(k).

k=l k=l

-L2_

Thus, the amount of the deviation of the predictor result is the inner product of the DC

value with the predictor weights, which explains the disproportionate effect of DC bias

on the predictor result. One does not want to totally eliminate local signal DC bias from

the predictor result since this is part of the signature one is trying to detect. The predictor

result that is desired is

N

X(n) = _ W(k)X(n-k) + C

k=l
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Therefore,subtract
N

C _ W(k) andaddC:
k-1

N N N
A

X(n) = E W(k)X(n-k) + C E W(k)- C X W(k) + C

k--1 k=l k-1

Now reorganizing to obtain the desired correction term,

N N N

X(n) = E W(k)X(n-k)+ C X W(k)-C[ 1- X W(k)]

k=l k--I k=l

Remembering that C is the signal vector mean,

N N N N

X(n) = _ W(k)X(n-k) + C _ W(k) + [1/N _ X(n-k)] [ 1- _ W(k)]

k=l k=l k=l k=l

N N N
A

X(n) - C E W(k) + E X(n-k)[W(k) + [ 1 - X W(k)] / N ]

k-1 k=l k=l

Thus, to eliminate perturbations due to DC bias and the local signal block mean, the
N

factor [ 1 - _ W(k)] / N ] is added to each of the weights ahead of time.

k-1

The above correction factor was implemented in the predictor training procedure

and results in a significant improvement in the predictor performance as evaluated in a

pilot study.



CHAPTER THREE

REAL TIME IMPLEMENTATION

3.1 Introduction

The methodologies are presented in this chapter for the real time implementation

of the LMS linear prediction algorithm for the detection of fetal heart tones. The

technique used for heart rate derivation and correction for spuriously detected heart tones

is explained. In section 3.2 the hardware system is described. An overview of the

software is given in Section 3.3. The TMS320C25 real time algorithm is presented in

Section 3.4. The PC/TMS handshaking control/display program is delineated in section

3.5. The algorithm variables are listed in section 3.6. Processor utilization is discussed

in section 3.7.

3.2 Hardware

A block diagram of the monitor system hardware is shown in figure 3.1. The

hardware consists of the seven-element sensor belt, an impedance matching

instrumentation amplifier for each sensor with a fixed gain of 100, an analog multiplexer

to allow sensor selection, two four pole Butterworth 20 Hz high pass filters in series, a

six pole Bessel 55 Hz anti-aliasing low pass filter, a second amplifier with gain

adjustable from one to 500, a 40 MHz TMS320C25 (TMS) digital signal processing

board (Atlanta Signal Processing, Inc.), a PC, and a single channel analog strip chart

recorder (AB Goerz Co., Model SE110). Additionally, a handheld button allows patients

to flag the occurrence of fetal movement on the strip chart tracing. The hardware is

36
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housedin aportablecartsothatit canbeeasilytransportedto theEVMS clinic andfit

into thetight confinesof thepatientevaluationrooms. Figures3.2,and3.3depictthe

hardwaresystem.

Thehardwareparametersweredeterminedby analysisof the information

gatheredfrom thedatacollectionphase.Therealtime samplingratewasselectedto be

158Hzbecausegreaterthan90%of thefetal hearttonespectralenergywasnotedto be

below55Hz (figure2.8) andbecause158Hz wasthelowestsamplingrateavailablefor

theTMS320C25board. The anti-aliasing cutoff frequency of 55 Hz was selected to be

as low as possible without significantly attenuating the fetal signal. A sharp 55 Hz cutoff

also would attenuate some of the 60 Hz EMI.

3.3 Software Overview

The system software consists of the TMS software and the PC software which run

concurrently in real time.

The TMS software processes the filtered acoustic sensor signal for the detection

of fetal heart tones. The TMS software also accomplishes heart rate derivation, sensor

selection, and calibration and control of the strip chart recorder.

The PC software is a PC/TMS control/display routine. Its function via

handshaking with the TMS is to allow PC keyboard control of the TMS operation and to

display in real time the incoming acoustic waveforms along with the parameters

generated by the TMS algorithm and the output heart rate value. Also displayed are an

accumulator overload flag and a poor signal quality indicator.

3.4 TMS320C25 Algorithm

An overview flow diagram of the TMS Fetal Heart Rate Monitor Algorithm is

shown in figure 3.4. The TMS software includes the Initialization Routine, the Linear
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Figure 3.4. Real Time Fetal Heart Rate Ag0rithm Overview
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Predictor Routine, the Normalization Routine, the Mean Square Error (MSE) Routine,

the Threshold Routine, the Heart Rate Routine, and the Signal Quality Routine. After the

Initialization Routine a main loop routine calls each of the other routines as discussed

below in section 3.4.2.

3.4.1 Initialization Routine

On start up the Initialization Routine, shown in figure 3.5, initializes several

buffers and pointers. The weights for the heart tone linear predictor and the heart rate

linear predictor are down-loaded as well as several constants.

3.4.2 Main Loop Routine

The Main Loop Routine shown in figure 3.6 constitutes the core of the TMS

software. It is entered after initialization and calls all of the other routines in sequence.

Control parameters are lastly input and the loop repeats.

The Main Loop Routine begins with the input of a sample via the TMS board

A/D converter. Start of conversion is initiated by the on-board sampling rate clock. The

end of conversion flag is polled by the routine until activated at which point the current

sample is input and stored. The Linear Predictor Routine is then called.

3.4.3 Linear Predictor Routine

The Linear Predictor Routine is shown in figure 3.7. The predictor estimates the current

sample point by taking an inner product of the immediately preceding N samples with the

predictor weights. The predicted value is defined by

N
/x

X(n) = _ X(n-k)W(k)

k=l
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Figure 3.5. Initialization Routine.
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_PREDICTOR ROUTINE_
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Multiply each prevlous sample times weight, accumulate,

and shift; X(-N) (oldest point) is at top of data buffer and

is multiplied times W(1); samples shifted: X(n-l) = X(n)
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2 ""

e (n) ---- [X(n) - X(n)] 2

Return

Figure 3.7. Linear Predictor Routine.
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At the same time the samples in the data buffer are rotated (shifted upward by one

location, the oldest sample being lost) and the current sample is placed at the bottom of

the buffer. Fixed point arithmetic on the TMS requires that the values in the inner

product be integers and that the inner product result not overflow the 32 bit accumulator,

including the sign bit. The sample values, which come from the AdD converter, are

already 16 bit integers including the sign bit. The predictor weights, which are generated

off-line, are decimal values of slightly less than 2 and so are scaled for TMS arithmetic

as 16 bit integers (including sign bit) by multiplying each by 2 14. The product of one

weight and one sample could be maximally 32 bits. But N 32 bit numbers summed for

the inner product could overflow the accumulator when the input signal is of large

amplitude. The accumulator overflow flag is therefore output to the PC monitor display

as an indicator of the need to decrease front end amplifier gain. As well as observing the

overflow flag, the user can also adjust the amplifier gain so that the waveform on the

display is within a specified range of amplitude. Automatic gain control was not used

due to complex scaling problems encountered with implementation of this process in

fixed point arithmetic.

The final 32 bit inner product predictor result is converted to a 16 bit signed

result by shifting the accumulator two places to the left and storing the high 16 bits. This

divides the result by 214 to compensate for the initial scaling up of the weights by 214 .

The predicted sample value is subtracted from the actual sample value

encountered to generate the predictor error which is squared in preparation for

subsequent generation of the mean square error expressed by

A

e2(n) -- [ X(n)- X(n) ] 2



wheree2(n)is thesquaredpredictorerror. Thesquarederror is thennormalizedto the

local signalpowerin theNormalizationRoutine.

3.4.4 Normalization Routine

The Normalization Routine is shown in figure 3.8. Normalization of the squared

error to the local mean signal power is necessary because the difference between the

predicted signal point and the actual signal point is a not only a function of how good a

match the predictor has made but also is a function of the amplitude of the signal itself.

The latter is due to the fact that the predictor inner product contains the signal vector, so

that the above difference value is a scalar function of the signal amplitude. The error

would therefore tend to increase when a heart tone was encountered rather than decrease

if normalization to local mean signal power were not performed. Mean signal power is

used for normalization rather than mean amplitude because it is the square of the error

that is being normalized.

The local mean signal power estimation is accomplished by summing the squares

of the signal sample amplitudes over the predictor block length. DC bias should not be

included in the local power estimation so that the variance of the signal vector is used.

The expression for the normalized squared predictor error is then

_.2(n ) _2(n_
= o2

where "_2(n) is the normalized squared error and 0 2 is the variance. An unbiased

estimator for the discrete point variance is
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Figure 3.8. Normalization Routine.



Ox2 --[1/(N-1)]
N-1

[ X(n) - ,X]2

n-0

Implementation of the above expression on the TMS requires breaking it apart and then

recombining to produce the desired form. Thus,

N-1

0 2 = [1/(N-I)] _[X2(n) - 2XX(n)+ ,_2]

n=0

N-1 N-1 N-1

[1/(N- 1)l[ _ X2(n) - 2.'_ _ X(n) + y. ,_2 ]
n=0 n=0 n=0

N-1

[1/(N- 1)][ _ X 2(n) - 2N_ 2 + N'X2 ]

n=0

N-1

[1/(N- 1)][ _ X2(n) - N'X2]

n--0

N-1 N-1

[1/(N- 1)1[ _ X2(n) - N [(l/N) y_ X(n)] 2]
n=O n=O

N-1 N-1

o 2 = [I/(N- 1)][ _ X2(n) - (l/N)[ _ X(n)] 2 ].

n=O n=O

The expression for the normalized squared error therefore becomes:
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_'2(n)
[e 2(n)] (N- 1)

N-1 N-1
X2(n)- (l/N)[ _ X(n)] 2

n=0 n=0

The factor N - 1 in the numerator can be eliminated since it is simply a constant, so that

the final expression for the normalized squared error is:

e 2(n)
"g2(n) = N-I N-1

y. X2(n)- (l/N)[ _ X(n)] 2

n=O n-O

The denominator quantities are now easily computed on the TMS. The sum of the

squares of the signal samples and the square of the sum of the signal samples are

accomplished via separate rotating buffers as the samples come in. To streamline

division by N, 1/N is represented as a scaled integer and the computation is

accomplished by multiplication and subsequent rescaling which is more time efficient for

the TMS.

Implementation of the final expression on the TMS requires division of the

squared error by the expression in the denominator. This creates a significant problem.

Division on the TMS, is a relatively complex, time-consuming process, and is especially

so for 32 bit division. Thirty-two bit division is necessary in order to avoid untenable

scaling problems and sub-optimal truncation of accumulator results, as each of the above

denominator separate sums can be much larger than 16 bits. A method that would

consistently grab the optimum 16 bits of the 32 bit accumulator sums and thereby allow

16 bit division for error normalization was unable to be formulated. Also, fixed point

division requires a separate routine for integer versus fractional division which again
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results in considerable scaling problems when manipulating quotients that may come

from the two different routines.

In order to circumvert the above difficulties, 32 bit division is implemented by a

leading zero comparison routine (figure 3.9). First, the number of leading zeros of the

numerator and denominator quantities are determined by a shift into carry, branch on

carry methodology. Then the number of leading zeros of the numerator is subtracted

from that of the denominator to give an exponential normalized squared error, NSEex p or

NSEex p - log 2 (_2(n) )"

3.4.5 MSE Routine

The MSE Routine, as shown in figure 3.10, converts the exponential normalized

squared error into a real numerical squared error and then computes the mean squared

normalized error (MSE). Mathematically this is

MSE(n) = (l/E)

E-1

(2)NSE_=p.

11=0

where E is the error window. This conversion is accomplished by loading the

accumulator with all zeros except for a "1" in a single bit position. The accumulator is

rotated the number of times equivalent to the value of NSEex p, left or right depending on

the sign of the exponent, or not at all if the exponent is zero. The optimal starting bit

position for the shifted "1" was determined experimentally by observation of NSEex p

ranges during real time fetal heart tone processing. The resulting 32 bit normalized

squared error is equivalent to 32 bit fixed point division normalization and is produced

with no scaling problems.
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LEADING ZERO ROUTINE)

leading

zeros

count

Initialize accumulator rotation

counter ---- 31 maximum; initialize

leading zero counter -----0

L
?

into carry bit

yes

_-- Z?

Increment leading zerocounter

no

Store leading

zeros count

Return

Figure 3.9. Leading Zero Routine.
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M_N SQUARE ERROR ROUT_

1
Fetch power of 2 normalized squared error

for conversion to real squared error

Initialize accumulator for rotation -- all

zeros except a "i" in bit #21

[
Load shift counter with exponential

normalized sq. error (power of two)

I Clear carry bit J

Is exponent positive, negative, or = 0?

pos

_g
Shift

accumulator

right

I
,1

Decrement

neg

Shift

accumulator

left

[
Decrement

shift counter

no

shift counter

no

Sum N real normalized sq. errors; Output as MSE to

display and store as 32 bit number in threshold buffer

zero

No shift

_ Display. on 1monltor

Figure 3.10. Mean Square Error Routine.
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This leading zero method of division gives a result that is theoretically accurate to

within a factor of two. Confirmation of this theoretical accuracy was accomplished by a

pilot study. In this pilot study the fixed point values were calculated by a PC on the

above numerator and denominator quantities transferred in real time from the TMS. The

corresponding leading zero normalized squared error was also transferred from the TMS

for comparison. The maximum difference between the leading zero fixed point values

and the floating point values was observed to be a factor of two or less.

The remainder of the MSE routine is devoted to calculating the mean of the

current and previous normalized squared errors over an error window. A rotating buffer

was used for storage of the 32 bit normalized squared error values and calculation of the

MSE. The length of the error window was arbitrarily set to be the length of the

predictor.

The 32 bit MSE value is read from the TMS memory by the PC and plotted on

the monitor screen in real time underneath the fetal signal as illustrated in figure 3.11 (a

synthesized FPCG signal is produced by repeatedly outputting a template set of points).

The level of the MSE ostensibly indicates the presence or absence of the fetal heart tone

signature. The point of decline of the MSE lagsthe fetal heart tone plot by 2N points

due to the length of the predictor and the length of the error window.

When the MSE value declines to a local minimum, the predictor has locked onto

a signature similar to that from which its coefficients were derived. Noise waveforms

give local minimums theoretically of less magnitude, so that by setting a minimum MSE

threshold, detection of the fetal heart tone signature is accomplished.
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3.4.6 Threshold Routine

The Threshold Routine is illustrated in figure 3.12. The mean of the most recent

block of MSE's is used as the threshold, HMSE(n), for detection of the fetal heart tone

signature. This is expressed by

M-1

HMSE(n ) -- (I/M) _ MSE(k)

k-O

where M is the threshold calculation window. The sample index number, n, is included

in the expression because the threshold value is updated with each new sample value. A

continually updating threshold level was used instead of a global threshold level in order

to accommodate changes in signal quality. Several threshold window lengths were

evaluated in a pilot study in order to determine an optimal range, with M = 128 being

used in this research (for division convenience M is chosen as a power of two).

The threshold routine uses a pair of rotating 16 bit buffers of length M to

accomplish 32 bit arithmetic. Each new 32 bit MSE value is stored as two 16 bit

numbers placed at the bottom of the buffers. The values in the buffer are then summed

and rotated (shifted to the next higher locations with the oldest value being lost). The

mean of the M summed MSE's is taken by shifting the accumulator right by log2M bits

and storing the low 16 bits.

The MSE threshold level is next combined with positive and negative hysteresis

values. This hysteresis-modified result constitutes the final threshold (range) for

comparison with the current MSE for fetal heart tone (FHT) detection. The amount of

hysteresis ideally should be the standard deviation of the background noise, but as this
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THRESHOLD ROUTINE)

I
I Load MSE value counter with threshold window length

(number of MSE values averaged to produce threshold)

and set pointers at tops of pair of 16 bit threshold buffers

Sum and shift 32 bit MSE value in pair of 16 bit buffers [

q,
IDooromo°tpoi°torsl

no

Calaculate mean value of MSE's by shifting sum by I

number of bits = power of 2 of len_gth of buffer I

Save result as threshold to use for fetal I
1

heart tone event occurrence I
+

Subtract hysteresis value 1from threshold

yes

Set FHT _:_

indication[

= i °w ___ Display on
monitor I

no

Add hysteresis ]value to threshold

yes

)q Return_<_

f Set FHT /
._ indicat ion__..._

= high [ l

[ Display on [I [ monitor

Figure 3.12. Threshold Routine.
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informationwasdifficult to determine,thehysteresislevel in this researchwassetby

empiricalmeans.

If thecurrentMSEis greaterthanthethreshold,HMSE,minushysteresisand less

than the threshold plus hysteresis, a FHT is judged to be present and the FHT indicator

state is set high. Otherwise, the FHT indicator state is set low. To express this detection

rule, if

(HMs E - Hys)] < MSE < (HMs E + Hys)

then FHT -High

Otherwise, FHT = Low

The FHT indicator state is plotted on the monitor display in real time below the MSE

plot (figure 3.11). The heart rate calculation routine is then called.

3.4.7 Heart Rate Calculation Routine

The Heart Rate Routine is shown in figure 3.13. The fetal heart rate, R(n), in

beats per minute is given by

R(n) = (60)(1 / T(n))

where T(n) is the period of the heart tones, i.e. the time interval between fiducial timing

points, and n is the current sample number. The heart rate is updated with each new

sample value. The fiducial timing points of the heart tones are the leading and trailing

edges of the threshold-produced FHT indicator (high/low) states. A plot of the indicator
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(HEART RATE ROUTINE_

I
(Has a fetal heart /

tone (FHT) edge fl(

occurred?) yes t

(Therefore aFHTedge [ _
has occurred; is it a- [ no

leading or trailing_dge?) I

_ yes

I Call trailing edge procedure to I
calculate trailing edge interval I

I

IAverage leading and trailing edge intervalsand calculate new instantaneous M_rt rate

[Call heart rate linear prediction procedure [
I

Put final new instantaneous heart rate in buffer[

I

and average with previ_/us ratez in buffer
1

[Replace old FHT state with current state I
l

Output new rate to display and strip [chart recorder (vi D/A converter'l ]

Increment leading and

trailing edge interval

counters; replace previous

FHT state with new state

I

Call leading edge procedure to [

calculate leading edge interval I

Rate = (f_(60) 1count

_ Strip chart recorder ]

Figure 3.13. Heart Rate Routine
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states has the appearance of a square wave, the period of which is the period of the heart

tones (figure 3.11). To determine the period either the leading edge to leading edge

interval or the trailing edge to trailing edge interval can be measured. The time of the

interval, T(n), is calculated by

T(n) = S(n) / fs

where S(n) is the number of samples in the interval and fs is the sampling rate. The

heart rate, R(n),in beats per minute,is therefore given by:

R(n) = [(fs)(60)] / S(n)

In this algorithm both leading edge and trailing edge intervals are measured (by separate

sample counters) in order to reduce error. An average of the two intervals is taken as the

heart tone period.

The Heart Rate Routine must first determine whether a FHT edge has occurred.

The current FHT state is compared with the immediately previous state. If the current

state differs from the previous state, an edge has occurred. If they are the same an edge

has not occurred and the edge to edge interval sample counters are incremented by one.

The routine then returns to the Main Loop Routine for processing the next sample. If a

FHT edge has occurred, the routine must determine whether the edge is a leading or

trailing edge. If the new FHT state is a low, because it is different than the preceding

state which must thus be a high, the edge is a trailing edge. Similarly, if the new state is

a high, the edge must be a leading edge. A specific routine for each type of edge is then

called. The edge routines are identical except for the variables and therefore will be

discussed as one routine.
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Leading and Trailing Edge Routines

A generic Edge Routine is depicted in figure 3.14. The Leading Edge and

Trailing Edge routines measure the intervals between FHT leading edges and between

FHT trailing edges, respectively by counting sample points. The routines are, however,

also concerned with identification and correction of spurious intervals originating from

missed heart tones or noise-induced false heart tones.

The interval sample count, S(n), is compared to an expected range in order to

identify spurious intervals. This range is based on the maximum rate of change for heart

tone intervals observed in the data collection phase. Short term interval variability

occurs due to blood flow dynamics. Long term variability occurs due to changes in

overall heart rate, such as that accompanying fetal movement. The maximum rate of

change from one interval to the next was observed (in the data collection pilot study) to

be less than 20%.

The routine, therefore, uses an expected range of plus or minus 20% of the

average of the immediately preceding edge to edge intervals, A(n). If the current

interval, S(n), is within that range, the edge routine returns to the heart rate routine for

calculation of heart rate as above. If the interval exceeds the range, the routine then

substitutes an appropriate interval slanted toward the actual interval observed. To

summarize, if

[A(n)- 0.2A(n)] < S(n) < [A(n) + 0.2A(n)l

then S(n) is accepted.

Otherwise,
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no

Get edge interval count ]

I

V
yes

Substitute interval value

= average interval slanted

toward observed interval

= av. int ÷-0.2(av. int.-

observed int.)

Put "1" in signalquality buffer

Set rate-skipflag

EDGE ROUTINE (generic)_

I
have been set if last interval was spurious)

yes] _ Reset rate-skip flag I

Reinitialize same

edge interval count

Put "0" in
signal quality

buffer

Store count for

heart rate calculation

and put in count in buffer

for range calculation

Increment otheredge counter

Reinitialize same edge counter I

Average previous edgecounts in buffer

Update expected range for next count I

= average count +- 0.2(average count) I

I,
Replace old

FHT state with

current state

Increment

other edge

counter

Figure 3.14. Edge Routine, Generic (Leading or Trailing).
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S(n) - A(n) + C [ S(n) - A(n) ]

where C is the slanting factor. Slanting the interval toward the observed out of range

value avoids "locking up" the substitution process. If an extremely small interval were

encountered from a noise spike, for example, the average interval value could be pulled

so low that all subsequent intervals would be greater than the range so that substitution

would continue indefinitely. The sign resulting from the subtraction slants the

substitution in the appropriate direction. A slanting factor of 0.2 was empirically used in

this research.

Whenever a substitution is made, a "1" is put into a signal quality buffer location.

This buffer is used by the Signal Quality Routine (discussed below) to keep track of the

ratio of substituted versus good heart tone intervals as a measure of signal quality. Too

many substitutions indicates poor signal quality and results in lifting of the strip chart

pen. If the observed interval does not require substitution, a "0" is put in the signal

quality buffer.

Because substitution is precipitated by encountering a spurious interval, there is

no valid reference point for the start of the next interval. The edge routines therefore

wait until the next edge of the same type is encountered before restarting the interval

sample counters. This is done by setting an interval skip flag which holds counting until

the next edge of the same type arrives. The remainder of each edge routine is involved

with placing either the current or the substituted interval value in the previous interval

buffer, taking the average of the buffer, and generating the new interval range value for

comparison with the next encountered interval. The edge routines then return to the heart

rate routine where the most recent leading edge and trailing edge intervals are averaged

and the instantaneous heart rate is computed. This procedure is summarized by



2(fs)(60)
R(n) -- SL(n ) + ST(n ) .

where R(n) is the instantaneous heart rate based on the current intervals and SL(n ) and

ST(n ) are the leading and trailing edge interval sample counts, respectively.

Heart R_te Linear Predictor Routine

Figure 3,15 illustrates the Heart Rate Linear Predictor Routine. The

instantaneous heart rate is computed from the two edge interval counts as discussed

above. Spuriousness of one or the other interval counts requires a certain amount of time

to recover via the slanting process. This can cause perturbations in the derived

instantaneous heart rate. In an effort to minimize such perturbations a second linear

predictor routine was used in the heart rate computation process. The heart rate linear

predictor is described by

M

R(n)-- _ R(n-k)P(k).

k=l

A

where R(n) is the predicted rate, P(k) are the heart rate predictor coefficients, and M is

the length of the predictor. Precalculated first order predictor coefficients were used

which in effect fits the heart rate points to a straight line (including slope) in order to

predict where the next rate point should be [25]. A pilot study evaluated various heart

rate predictor lengths. A length of M= 4 was found to be most efficacious and was used

in this research. Longer lengths tended to put the predictor into infinite substitution. The

first order coefficients are:

P(1) = -0.50
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(HEART RATE LINEAR PREDICTOR ROUTINE)

i

Load pointer A with address of top of [

I

Iheart rate prediction buffer (oldest rate)

l

I Load pointer B with address of I

I

[first heart rate predictor weight, H(1)

^ 4
R(i) -- _ R (i-k) H(k)

kml

Multiply rate times weight, accumulate,

and shift rate to next location in buffer

[ Shift pointers A and B I

no

[Calculate predicted range = +- 20% of predicted value I

Store instantaneous

yes

in "_ rate in averaging

buffer

I ubstitute rate = predicted rate ÷ 20% of
actual - predicted rate

I, Store substitute rate in averaging buffer ,
| I

Figure 3.15. Heart Rate Linear Predictor Routine.
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P(2) = 0.00

P(3) = 0.50

P(4) = 1.00

The current instantaneous heart rate, R(n), is compared to an expected range based on the

predicted value. If the rate is within the expected range the instantaneous rate is stored

for output to the strip chart recorder. Otherwise a rate substitution is made in a manner

similar to that of the edge routine substitution process. The heart rate substitution

procedure is as follows. If,

A A A A

[R(n) - GR(n)] < R(n) < [R(n) + GR(n)]

then the current instantaneous heart rate is accepted.

Otherwise,

A A

R(n) = R(n) + J [ R(n)- R(n)]

G is a range factor, set at 0.2 based on the data collection pilot study analysis. J is a

slanting factor set empirically at 0.2 for this research. The substituted rate is scaled for

output via D/A converter #1 to the strip chart recorder.

The remaining portion of the heart rate routine is involved in further smoothing

of the heart rate plot for output to the strip chart recorder. A keyboard selectable

(optional) smoothing procedure is performed of the current and previous instantaneous

rates over a block length B, where

B

Rsm(n ) = 1/B _ R(n).

k=l
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For thisresearchB is 16rates.

3.4.8 Signal Quality Routine

The Signal Quality Routine, shown in figure 3.16, assesses the quality of the

fetal heart signal being processed. The pen on the strip chart recorder is lifted if the

quality becomes too poor. The edge interval routines described above insert either a "1"

or a "0" into a rotating buffer contingent upon a substituted versus a valid heart tone

interval. The Signal Quality Routine takes a sum of this buffer and compares that sum to

a maximum number of substitutions allowed. If the proportion of substitutions is greater

than the allowable maximum, a flag is set which when dectected by the PC brings about

lifting of the strip chart pen and blocking out of the heart rate value on the monitor

display with red. When the proportion of substitutions falls below the maximum again,

the flag is reset. The PC then puts the pen back down and displays the heart rate again.

3.4.9 Sensor Select Routine

The sensor select routine (not illustrated) allows one of seven sensors to be

selected by the TMS for input. A manual keystroke on the PC is detected by the TMS

whereupon a pulse is sent out via D/A converter #2 to a counter chip controling the

address input to the analog mutiplexer. The counter increments by one, selecting the

next multiplexer channel. A routine for allowing the TMS to automatically select the

optimal sensor was investigated. The minimum longterm mean MSE value appeared to

be the best criteria for sensor selection. The automatic routine was not implemented in

the real time system because of difficulties with fabricating a multisource acoustical

generator required to test the software with the sensor belt. Future development of the

system will include this feature.



68

SIGNAL QUALITY ROUTINE)

+
I Load counter with sig. qual. buffer length ]

+
Set pointer to top of buffer ]

Sum buffer location state ("1" or "0") ]

+
Shift value to next buffer location [

+
Decrement pointer I

+

no

yes

no

Put strip chart pen down

(or keep it down)

Return _-.

1

Lift pen on strip /

Jchart recorder

Figure 3.16. Signal Quality Routine.
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3.4.10 Strip Chart Calibration Routine

The Strip Chart Calibration Routine (not illustrated) causes the TMS to output a

full scale constant value to the strip chart recorder for calibration purposes upon

detecting a certain keystroke on the PC keyboard. Once the key is released the TMS

returns to the monitor algorithm.

3.5 Algorithm Variables

The real time fetal heart rate monitor algorithm of this research contains 15

variables listed in Table 3.1. Each of these variables was empirically adjusted using pilot

studies. Optimization of these variables is planned for future development.

3.6 PC/TMS Handshaking Control/Display Routine

A handshaking program was devised to allow real time PC keyboard control of

the TMS algorithm and to allow real time display of the incoming fetal heart signal and

TMS generated parameters. The fetal signal and parameters such as MSE, FHT state,

sensor number, overflow status, and heart rate are displayed in real time on the monitor

screen as shown in figure 3.11. The PC/TMS Handshaking Control/Display Routine,

shown in figure 3.17, halts the TMS, accesses its memory, reads and writes parameters,

and then lets the TMS go while the output parameters are plotted on the monitor screen.

The PC also controls the up/down position of the pen of the strip chart recorder

depending on the signal quality flag of the TMS.

3.7 Processor Utilization

The processing time required for theTMS algorithm loop must not exceed the

sampling period of the processor or data loss will occur. Confirmation that the total
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VARIABLE CURRENT VALUE

1. Sampling rate ............................................................................................ 158

2. Predictor length ......................................................................................... 20

3. Error window for calculation of MSE ....................................................... 20

4. MSE window for calculation of threshold ................................................. 128

5. Threshold hysteresis ................................................................................. 7

6. Spurious FHT edge to edge interval substitution variables

6.1 Number of previous edge-edge intervals averaged ......................... 4
for next interval evaluation

6.2 Percent deviation of interval allowed before substitution made ...... 20

6.3 Percent slanting of substituted value toward actual value ............... 20

7. Heart rate linear predictor length ................................................................. 4

8. Heart rate substitution variables

8.1 Percent deviation of heart rate allowed before substitution .............

.

8.2 Percent slanting of substituted value toward actual value ................

Pen lift variables

9.1

9.2

20

20

Number of edge-edge intervals checked for substitutions ............... 20

Ratio of good vs. substituted intervals which when exceeded

initiates pen lift .................................................................................. 10/20

10. Heart rate smoothing: number of instantaneous rates averaged ................

11. Anti-aIiasing filter cutoff frequency (Hz) ....................................................

16

55
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QPCfrMS HAND SHAKING ROUTINE)

I
I

PC

l
ITHBFcXoaro_
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holdTMSacknowledges t

\

TMS memory
being read/written

into by PC

+

I TMS continues[al_jorithm [

Clear THBF flag by

reading TMS register 2

Send Hold requestto TMS

__no

[AccossT__oMSmemryI

Iparameters

I Display parameters _on monitor screen

I ead keyboard Iinput

[

Monitor

display

Figure 3.17. PC/TMS Handshaking Routine.
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algorithm processing time was less than the sample period was accomplished by

outputting to a D/A converter a high pulse transition at the start of the algorithm

followed by a low transition at the end of the algorithm. The time between transitions,

measured via an oscilloscope, gives the total algorithm time. It was required that the

TMS board A/D converter be software driven for this procedure rather than letting the

sampling rate clock control the converter. This is because the A,/D and D/A are tied

together so that only one D/A transition was possible if the sampling rate clock were

allowed to control the A/D-D/A system. The TMS algorithm was found to require

approximately 0.5 msec. for execution. With a sampling period of approximately 6

msec. this represents a processor utilization of 8 percent if the PC/TMS handshaking

routine time is not included. The handshaking routine adds an additional 0.6 msec.

which constitutes the time that the TMS is halted. This brings the total algorithm time to

1.1 msec. or 18.3 percent total utilization.



CHAPTER FOUR

EXPERIMENTAL STUDY

4.1 Introduction

The goal of this research was to develop a real time signal processing algorithm

which would detect the time history of fetal heart tones within a noise contaminated

acoustic signal, and from this information would derive heart rate. The real time

methodologies to achieve this goal were presented in Chapter 3. The experimental study

to validate the feasibilty of the LMS linear predictor algorithm and the associated heart

rate derivation routine is described in the current chapter. The acoustic system is

compared with a Corometrics Model 145 ultrasonic monitor in the clinical setting of the

fetal NST.

The third generation sensor belt was developed for the comparative phase of this

research, containing seven back-to-back sensor pairs in a 12 centimeter hexagonal array.

It was hoped that the large arrray would allow tracking of the fetal heart tone point as it

migrated with fetal movement.

4.2 Patient Subjects

Sixteen patients coming to the EVMS Department of Fetal Maternal Medicine

participated in the experimental study. These were high risk mothers who were being

monitored for fetal well being by weekly ultrasound NST's. The Institutional Review

Board at EVMS gave approval for the second clinical phase of this research.

73
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4.3 Procedure

On arrival at the EVMS clinic patients were asked by the NST technician whether

they would be willing to participate in the acoustic monitor study. If they volunteered,

written informed consent was obtained. The location of the fetal heart was then

determined by means of an ultrasonic imaging device as per routine for the ultrasonic

NST. A deLee Hillis fetal stethoscope was next used to locate the loudest heart tone

point in the area of the fetal heart indicated by the imaging device. The acoustic and

ultrasonic sensors were then positioned with the acoustic sensor being placed as close to

the fetal heart tone point as the ultrasonic sensor position would allow.

Once the sensors were positioned the acoustic monitor system was powered up

with concomitant initiation of the software. The strip chart recorder was calibrated by

means of the PC keyboard and the TMS calibration routine (as described in section

3.3.10). The electronics were then powered up and the amplifier gain adjusted as

necessary using the monitor screen to assess signal amplitude. The appearance of the

real time monitor screen with an adequate fetal signal is shown in figure 4.1.

Repositioning of the sensor was sometimes necessary to obtain an adequate signal. A

software generated "beep" was output by the system as an audible indication of detection

of each fetal heart tone. Once an adequate signal was confirmed, the strip chart recorder

was initiated (figure 3.2). A mark was made on the ultrasonic strip chart to indicate

where simultaneous acoustic monitoring began. The simultaneous recordings were

carried out over the remainder of the NST, a period of approximately 15-20 minutes after

which both sensors were removed.

The acoustic and ultrasonic sensors competed for the same location on the

mother's abdomen. For obvious medical reasons the ultrasonic sensor had priority.

Because of this site competition it was not possible to obtain an adequate fetal acoustic

signal from six patients in the study and in no patient was it possible to use the third

generation array sensor belt due to its greater width. All of the simultaneous comparative
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recordingswerethereforedonewith thesecondgenerationbelt. Figure4.2 showsthe

secondgenerationsensorbelt andtheultrasonicsensorin placealongwith anadditional

sensorusedfor uterinecontractionmonitoring. Thethird generationbelt wasplacedfor

additionalheartraterecordingaftertheultrasonicNST if thepatientwasagreeableand

thefetuswasstable. Indirect confirmationthatthethird generationbeltwould produce

thesameresultsasthesecondgenerationbelt wastherebypossible.The thirdgeneration

belt is shownin figure4.3andis shownimplementedin figure 4.4. Themotheris

holding abuttonthatis pushed whenever fetal movement is felt.

One other problem resulted from the close proximity of the acoustic and

ultrasonic sensors. It is common practice for the technician performing the NST to

manually hold the ultrasonic sensor in position. Vibrations from the technician's hand

tended to be picked up by the acoustic sensor causing untenable signal to noise ratios in

four of the patients in the study. The comparative results from the remaining six patients

are presented in the next section.

4.4 Ultrasound Comparative Study

The comparative acoustic and ultrasonic heart rate strip chart records for six

patients are shown in figures 4-5 through 4-10. The acoustic heart rate record (shown in

red) was superimposed via a digital scanner onto the ultrasonic record (shown in black)

for direct visual comparison. Because the ultrasonic numerical data was unavailable,

only anecdotal comparison is possible.

Fetal movements are indicated by vertical black arrows with "FM" below them.

Note that the best correlation between the acoustic and ultrasonic records occurs during

heart rate accelerations associated with fetal movements.

Figure 4.11 is a heart rate record produced with the third generation multi-sensor

belt alone. This record was immediately subsequent to a comparative record with the

second generation belt system versus the ultrasonic unit shown in figure 4.10. The third
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generation heart rate record shows a clear acceleration associated with fetal movements

denoted by the small spike on the tracing produced by the mother's pushing the hand

button. It is concluded that the third generation belt would perform comparably to the

second generation belt if a comparison test with the ultrasound unit were possible.

4.5 Discussion of Results

The purpose of this experimental study was to test the feasibilty of the acoustic

system and the linear predictor algorithm for real time fetal heart tone detection and heart

rate derivation by comparison with an industry standard ultrasonic monitor. There is

good anecdotal correlation between the ultrasonic and acoustic heart rate records in five

of the six patients whose data is presented. The results from the other ten patients in the

study do not constitute valid comparisons due to disruptive extraneous factors. The

correlation is strongest during the periods of heart rate accelerations, a result possibly

attributable to the fact that fetal heart tones are of greater amplitude during accelerations.

Drop out (pen lift) periods are attributable to factors such as maternal movement,

changing fetal position, or excessive background noise.



CHAPTER FIVE

CONCLUSION

5.1 Overview

This research has demonstrated the feasibilty of the LMS linear predictor

algorithm for the real time detection of fetal heart tones from a noise contaminated

acoustic signal with subsequent derivation of heart rate. The acoustic linear predictor

system compares favorably with a commercial ultrasonic monitor for heart rate

generation in the context of the fetal nonstress test. Certain problems remain to be

solved, as discussed below. The system also contains multiple variables which require

optimization.

5.2 Algorithm Performance

1) Good anecdotal correlation in five out of the six valid comparative studies

indicates a high degree of efficacy for detection of fetal heart tones by the linear

predictor algorithm.

2) The algorithm is highly time efficient requiring only 18% processor utilization

for a TMS320C25 running at 40 MHz.

The algorithm is space efficient requiring less than four kilobytes of TMS board

memory.

Problems encountered:

The most significant problem encountered with the linear predictor algorithm

was its sensitivity to noise, particularly maternal movement artifact. It is

3)

4)
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conceivablethatthefetalhearttonesoundcanbemimickedby bodily "thumps"

suchasthemothermovingherhandagainstherleg. But grossobservationof

thepredictorperformancedoesnot indicatesuch. Onereasonfor thepredictor's

noisesensitivitymaybe thatthereis movementartifactincludedin thetraining

datafrom whichthepredictorweightswerederived. In thetime domainwhole

file trainingprocessusedfor this researchtheupdatingof theweightsis a

functiononly of localsignalpowerandthereforewouldalsotrainonnoise

spikes.

5.3

Other problems encountered include sensitivity of the predictor to maternal heart

tones. This problem was significant in the mothers with large overlap in the

fetal-maternal spectrum.

Other System Performance Aspects

1) The electronic components and parameters such as amplifier gain and filter

cutoffs appear to be adequate.

2) The sensor belt suffers from two problems:

a) The sensors are marvelous accelerometers and therefore quite sensitive to

rigid body motion. Compare the sensors to a simple bell stethoscope

which allows detection of the fetal heart tones with little or no body

motion sensitivity.

b) The sensor sensitivity to the fetal signal is somewhat low resulting in a

low signal to noise ratio. A gain factor of at least 5,000 is required to

amplify the fetal signal to the 3 volt amplitude level required to make use

of the dynamic range of the TMS board A/D converter. Compare this

again to a stethoscope which requires no amplification.
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5.4 Future algorithm/system development potential

1) Optimization of the fifteen algorithm variables listed in Table 3.1 may

significantly enhance the performance of the real time system.

2) Alternate predictor training methods may make the predictor more signature

specific and less noise sensitive. One training improvement would be to add a

detector to the time domain whole file training algorithm. The weights would be

updated only when both the local energy level exceeds a threshold value and a

heart tone is also detected by the predictor using a generic set of weights. Still

another training improvement would be real time training on each new patient.

Processing of the patient signal would be initiated with a generic set of weights

and these initial weights would be continually updated during processing.

Again, an effective method is needed to turn on the weight updating only when a

heart tone is encountered and off between tones.

3) More precise cancellation of accelerometer-type motion artifact could

significantly enhance the signal to noise ratio at the front end of the system.

Differential addition of the out of phase signals from the back to back sensor pair

still appears to be the best approach to this goal. But in order for this concept to

work properly the exact proportions of the acceleration noise signal on each of

the two sensors of the pair has to be known. Then the sensor outputs can be

appropriately scaled before differential addition. The ratio of acceleration

sensitivity of the pair may, however, not be a constant and may be a function of

such factors as belt tightness. Adaptive noise calcellation techniques could then

be used.
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4) Bettercharacterizationof thefetalhearttonesignalmay allow morespecific

detectionmethodsto bedevised.Forexample,insteadof beingasinglesystem

response,doesthefetalheartacousticsignalrepresenttheresponseof several

sub-systemsasmanifestedby thefirst andsecondheartsoundsor theM,T,A,P

sub-components.Thesesubsytemresponsesmaynotbe interdependent.A

predictortrainedon thecompositesystemresponsemayfail whenphase

differencesbetweenthesub-systemresponsesoccur. Perhapsa solutionis to use

multiplepredictors,eachtrainedonadifferent sub-systemresponse(ex.thefirst

or secondheartsoundor asinglesub-component).Thesemultiplepredictors

wouldoperateconcurrentlywith arequirementfor detectionbeingthat all the

predictorssimultaneouslyreachMSEminimums.

5) A possiblemethodto increasethesignalouputof thesensorsis to generate

tensionon thesensorsurface.Thesecondgenerationbelt hastwice thesignal

outputof thethirdgererationbelt,possiblybecauseits sensorsbecamebentfrom

repeatedtight contactwith thematernalabdomen.

5.6 Future Development Potential of the Acoustic Monitor Concept

The acoustic fetal heart monitor concept has several potential development areas:

1) Acoustic detection could be extended to detection of fetal movement in a manner

similar to that of detection of the heart tone signature. If fetal movement could

be detected in addition to the heart tones, then automation of the NST would be

possible. The acoustic sensors have a fairly flat frequency response down to DC

and could be used to detect even slow fetal movements. The monitor could

conceivably detect fetal movements which are imperceptable to the mother.
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2) Automaticsensorscanningusingthethird generationmultiple sensorbelt is a

planneddevelopment.Thesensorwith theminimumlong term MSE level

wouldbe thetheoreticaloptimumsensor.

3) Minaturizationof thesystemcouldallow homeuseof theacousticmonitor. This

would enable greater surveillance of high risk pregnancies and provide

convenience for the mother.

The totally non-invasive nature of the acoustic system lends itself well to long

term monitoring of high risk pregnancies. Detection and prevention of the causes of such

devastating maladies as cerebral palsy and birth defects are ostensibly within the realm of

possibilities. This research has demonstrated the feasibility of an idea. The acoustic

linear predictor fetal heart rate monitor has been shown to work. Continued effort should

bring the idea to a useful reality.
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